dplyr verbs are particularly powerful when you apply them to grouped
data frames (grouped_df
objects). This vignette shows
you:
How to group, inspect, and ungroup with
group_by()
and friends.How individual dplyr verbs changes their behaviour when applied to grouped data frame.
How to access data about the “current” group from within a verb.
We’ll start by loading dplyr:
group_by()
The most important grouping verb is group_by()
: it takes
a data frame and one or more variables to group by:
You can see the grouping when you print the data:
by_species
#> # A tibble: 87 × 14
#> # Groups: species [38]
#> name height mass hair_color skin_color eye_color birth_year sex
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 Luke Skyw… 172 77 blond fair blue 19 male
#> 2 C-3PO 167 75 NA gold yellow 112 none
#> 3 R2-D2 96 32 NA white, bl… red 33 none
#> 4 Darth Vad… 202 136 none white yellow 41.9 male
#> # ℹ 83 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
by_sex_gender
#> # A tibble: 87 × 14
#> # Groups: sex, gender [6]
#> name height mass hair_color skin_color eye_color birth_year sex
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 Luke Skyw… 172 77 blond fair blue 19 male
#> 2 C-3PO 167 75 NA gold yellow 112 none
#> 3 R2-D2 96 32 NA white, bl… red 33 none
#> 4 Darth Vad… 202 136 none white yellow 41.9 male
#> # ℹ 83 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Or use tally()
to count the number of rows in each
group. The sort
argument is useful if you want to see the
largest groups up front.
by_species %>% tally()
#> # A tibble: 38 × 2
#> species n
#> <chr> <int>
#> 1 Aleena 1
#> 2 Besalisk 1
#> 3 Cerean 1
#> 4 Chagrian 1
#> # ℹ 34 more rows
by_sex_gender %>% tally(sort = TRUE)
#> # A tibble: 6 × 3
#> # Groups: sex [5]
#> sex gender n
#> <chr> <chr> <int>
#> 1 male masculine 60
#> 2 female feminine 16
#> 3 none masculine 5
#> 4 NA NA 4
#> # ℹ 2 more rows
As well as grouping by existing variables, you can group by any
function of existing variables. This is equivalent to performing a
mutate()
before the
group_by()
:
Group metadata
You can see underlying group data with group_keys()
. It
has one row for each group and one column for each grouping
variable:
by_species %>% group_keys()
#> # A tibble: 38 × 1
#> species
#> <chr>
#> 1 Aleena
#> 2 Besalisk
#> 3 Cerean
#> 4 Chagrian
#> # ℹ 34 more rows
by_sex_gender %>% group_keys()
#> # A tibble: 6 × 2
#> sex gender
#> <chr> <chr>
#> 1 female feminine
#> 2 hermaphroditic masculine
#> 3 male masculine
#> 4 none feminine
#> # ℹ 2 more rows
You can see which group each row belongs to with
group_indices()
:
by_species %>% group_indices()
#> [1] 11 6 6 11 11 11 11 6 11 11 11 11 34 11 24 12 11 38 36 11 11 6 31
#> [24] 11 11 18 11 11 8 26 11 21 11 11 10 10 10 11 30 7 11 11 37 32 32 1
#> [47] 33 35 29 11 3 20 37 27 13 23 16 4 38 38 11 9 17 17 11 11 11 11 5
#> [70] 2 15 15 11 6 25 19 28 14 34 11 38 22 11 11 11 6 11
And which rows each group contains with
group_rows()
:
by_species %>% group_rows() %>% head()
#> <list_of<integer>[6]>
#> [[1]]
#> [1] 46
#>
#> [[2]]
#> [1] 70
#>
#> [[3]]
#> [1] 51
#>
#> [[4]]
#> [1] 58
#>
#> [[5]]
#> [1] 69
#>
#> [[6]]
#> [1] 2 3 8 22 74 86
Use group_vars()
if you just want the names of the
grouping variables:
by_species %>% group_vars()
#> [1] "species"
by_sex_gender %>% group_vars()
#> [1] "sex" "gender"
Changing and adding to grouping variables
If you apply group_by()
to an already grouped dataset,
will overwrite the existing grouping variables. For example, the
following code groups by homeworld
instead of
species
:
by_species %>%
group_by(homeworld) %>%
tally()
#> # A tibble: 49 × 2
#> homeworld n
#> <chr> <int>
#> 1 Alderaan 3
#> 2 Aleen Minor 1
#> 3 Bespin 1
#> 4 Bestine IV 1
#> # ℹ 45 more rows
To augment the grouping, using
.add = TRUE
1. For example, the following code groups by
species and homeworld:
Removing grouping variables
To remove all grouping variables, use ungroup()
:
You can also choose to selectively ungroup by listing the variables you want to remove:
Verbs
The following sections describe how grouping affects the main dplyr verbs.
summarise()
summarise()
computes a summary for each group. This
means that it starts from group_keys()
, adding summary
variables to the right hand side:
by_species %>%
summarise(
n = n(),
height = mean(height, na.rm = TRUE)
)
#> # A tibble: 38 × 3
#> species n height
#> <chr> <int> <dbl>
#> 1 Aleena 1 79
#> 2 Besalisk 1 198
#> 3 Cerean 1 198
#> 4 Chagrian 1 196
#> # ℹ 34 more rows
The .groups=
argument controls the grouping structure of
the output. The historical behaviour of removing the right hand side
grouping variable corresponds to .groups = "drop_last"
without a message or .groups = NULL
with a message (the
default).
by_sex_gender %>%
summarise(n = n()) %>%
group_vars()
#> `summarise()` has grouped output by 'sex'. You can override using the
#> `.groups` argument.
#> [1] "sex"
by_sex_gender %>%
summarise(n = n(), .groups = "drop_last") %>%
group_vars()
#> [1] "sex"
Since version 1.0.0 the groups may also be kept
(.groups = "keep"
) or dropped
(.groups = "drop"
).
by_sex_gender %>%
summarise(n = n(), .groups = "keep") %>%
group_vars()
#> [1] "sex" "gender"
by_sex_gender %>%
summarise(n = n(), .groups = "drop") %>%
group_vars()
#> character(0)
When the output no longer have grouping variables, it becomes ungrouped (i.e. a regular tibble).
select()
, rename()
, and
relocate()
rename()
and relocate()
behave identically
with grouped and ungrouped data because they only affect the name or
position of existing columns. Grouped select()
is almost
identical to ungrouped select, except that it always includes the
grouping variables:
by_species %>% select(mass)
#> Adding missing grouping variables: `species`
#> # A tibble: 87 × 2
#> # Groups: species [38]
#> species mass
#> <chr> <dbl>
#> 1 Human 77
#> 2 Droid 75
#> 3 Droid 32
#> 4 Human 136
#> # ℹ 83 more rows
If you don’t want the grouping variables, you’ll have to first
ungroup()
. (This design is possibly a mistake, but we’re
stuck with it for now.)
arrange()
Grouped arrange()
is the same as ungrouped
arrange()
, unless you set .by_group = TRUE
, in
which case it will order first by the grouping variables.
by_species %>%
arrange(desc(mass)) %>%
relocate(species, mass)
#> # A tibble: 87 × 14
#> # Groups: species [38]
#> species mass name height hair_color skin_color eye_color birth_year
#> <chr> <dbl> <chr> <int> <chr> <chr> <chr> <dbl>
#> 1 Hutt 1358 Jabba D… 175 NA green-tan… orange 600
#> 2 Kaleesh 159 Grievous 216 none brown, wh… green, y… NA
#> 3 Droid 140 IG-88 200 none metal red 15
#> 4 Human 136 Darth V… 202 none white yellow 41.9
#> # ℹ 83 more rows
#> # ℹ 6 more variables: sex <chr>, gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
by_species %>%
arrange(desc(mass), .by_group = TRUE) %>%
relocate(species, mass)
#> # A tibble: 87 × 14
#> # Groups: species [38]
#> species mass name height hair_color skin_color eye_color birth_year
#> <chr> <dbl> <chr> <int> <chr> <chr> <chr> <dbl>
#> 1 Aleena 15 Ratts … 79 none grey, blue unknown NA
#> 2 Besalisk 102 Dexter… 198 none brown yellow NA
#> 3 Cerean 82 Ki-Adi… 198 white pale yellow 92
#> 4 Chagrian NA Mas Am… 196 none blue blue NA
#> # ℹ 83 more rows
#> # ℹ 6 more variables: sex <chr>, gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
Note that second example is sorted by species
(from the
group_by()
statement) and then by mass
(within
species).
mutate()
In simple cases with vectorised functions, grouped and ungrouped
mutate()
give the same results. They differ when used with
summary functions:
# Subtract off global mean
starwars %>%
select(name, homeworld, mass) %>%
mutate(standard_mass = mass - mean(mass, na.rm = TRUE))
#> # A tibble: 87 × 4
#> name homeworld mass standard_mass
#> <chr> <chr> <dbl> <dbl>
#> 1 Luke Skywalker Tatooine 77 -20.3
#> 2 C-3PO Tatooine 75 -22.3
#> 3 R2-D2 Naboo 32 -65.3
#> 4 Darth Vader Tatooine 136 38.7
#> # ℹ 83 more rows
# Subtract off homeworld mean
starwars %>%
select(name, homeworld, mass) %>%
group_by(homeworld) %>%
mutate(standard_mass = mass - mean(mass, na.rm = TRUE))
#> # A tibble: 87 × 4
#> # Groups: homeworld [49]
#> name homeworld mass standard_mass
#> <chr> <chr> <dbl> <dbl>
#> 1 Luke Skywalker Tatooine 77 -8.38
#> 2 C-3PO Tatooine 75 -10.4
#> 3 R2-D2 Naboo 32 -32.2
#> 4 Darth Vader Tatooine 136 50.6
#> # ℹ 83 more rows
Or with window functions like min_rank()
:
# Overall rank
starwars %>%
select(name, homeworld, height) %>%
mutate(rank = min_rank(height))
#> # A tibble: 87 × 4
#> name homeworld height rank
#> <chr> <chr> <int> <int>
#> 1 Luke Skywalker Tatooine 172 28
#> 2 C-3PO Tatooine 167 20
#> 3 R2-D2 Naboo 96 5
#> 4 Darth Vader Tatooine 202 72
#> # ℹ 83 more rows
# Rank per homeworld
starwars %>%
select(name, homeworld, height) %>%
group_by(homeworld) %>%
mutate(rank = min_rank(height))
#> # A tibble: 87 × 4
#> # Groups: homeworld [49]
#> name homeworld height rank
#> <chr> <chr> <int> <int>
#> 1 Luke Skywalker Tatooine 172 5
#> 2 C-3PO Tatooine 167 4
#> 3 R2-D2 Naboo 96 1
#> 4 Darth Vader Tatooine 202 10
#> # ℹ 83 more rows
filter()
A grouped filter()
effectively does a
mutate()
to generate a logical variable, and then only
keeps the rows where the variable is TRUE
. This means that
grouped filters can be used with summary functions. For example, we can
find the tallest character of each species:
by_species %>%
select(name, species, height) %>%
filter(height == max(height))
#> # A tibble: 36 × 3
#> # Groups: species [36]
#> name species height
#> <chr> <chr> <int>
#> 1 Greedo Rodian 173
#> 2 Jabba Desilijic Tiure Hutt 175
#> 3 Yoda Yoda's species 66
#> 4 Bossk Trandoshan 190
#> # ℹ 32 more rows
You can also use filter()
to remove entire groups. For
example, the following code eliminates all groups that only have a
single member:
slice()
and friends
slice()
and friends (slice_head()
,
slice_tail()
, slice_sample()
,
slice_min()
and slice_max()
) select rows
within a group. For example, we can select the first observation within
each species:
by_species %>%
relocate(species) %>%
slice(1)
#> # A tibble: 38 × 14
#> # Groups: species [38]
#> species name height mass hair_color skin_color eye_color birth_year
#> <chr> <chr> <int> <dbl> <chr> <chr> <chr> <dbl>
#> 1 Aleena Ratts … 79 15 none grey, blue unknown NA
#> 2 Besalisk Dexter… 198 102 none brown yellow NA
#> 3 Cerean Ki-Adi… 198 82 white pale yellow 92
#> 4 Chagrian Mas Am… 196 NA none blue blue NA
#> # ℹ 34 more rows
#> # ℹ 6 more variables: sex <chr>, gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
Similarly, we can use slice_min()
to select the smallest
n
values of a variable:
by_species %>%
filter(!is.na(height)) %>%
slice_min(height, n = 2)
#> # A tibble: 47 × 14
#> # Groups: species [38]
#> name height mass hair_color skin_color eye_color birth_year sex
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 Ratts Tye… 79 15 none grey, blue unknown NA male
#> 2 Dexter Je… 198 102 none brown yellow NA male
#> 3 Ki-Adi-Mu… 198 82 white pale yellow 92 male
#> 4 Mas Amedda 196 NA none blue blue NA male
#> # ℹ 43 more rows
#> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>