Aller au contenu

Groupe trivial

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 4 janvier 2021 à 16:54 et modifiée en dernier par Proz (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique.

On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe).

Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1. C'est aussi « l' » objet nul (i. e. à la fois objet initial et objet final) de la catégorie des groupes, parfois noté 0.

Chez beaucoup d'auteurs[1],[2], le sous-groupe trivial d'un groupe G désigne le sous-groupe réduit à l'élément neutre de G, mais chez certains autres, « les sous-groupes triviaux d'un groupe G sont G et le sous-groupe de G réduit à l'élément neutre »[3].

Notes et références

[modifier | modifier le code]
  1. Marie Paule Malliavin, Les groupes finis et leurs représentations complexes, vol. 1, Masson, 1981, p. 22.
  2. RMS, vol. 114, Numéros 1 à 3, e.net 2004, II.A.5 p. 62.
  3. Aviva Szpirglas, Algèbre L3 : Cours complet avec 400 tests et exercices corrigés [détail de l’édition], Exemples 6.4.

Articles connexes

[modifier | modifier le code]