Skip to main content
Log in

On the number of square-cell configurations

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The numbers of simply and multiply connected square-cell configurations are computed. The computation is based on the original algorithm for constructive enumeration of animals which is founded on the DAST (dualist angle-restricted spanning tree) code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harary F, Mezey (1991) Theoret Chim Acta 79:379

    Google Scholar 

  2. Harary F, Palmer EM (1973) Graphical enumeration. Academic Press, NY, p 234

    Google Scholar 

  3. Read RC (1962) Can J Math 14:1

    Google Scholar 

  4. Harary F (1971) Graph theory, 2nd printing. Addison-Wesley, Reading, MA, p 194

    Google Scholar 

  5. Whittington SG (1987) in: Lacher RC (ed) MATH/CHEM/COMP 1987. Elsevier, Amsterdam, p 285

    Google Scholar 

  6. Soteros CE, Whittington SG (1988) J Phys A 21:2187

    Google Scholar 

  7. Madras N, Soteros CE, Whittington SG (1988) J Phys A 21:4617

    Google Scholar 

  8. Whittington SG, Soteros CE, Madras N (1991) J Math Chem 7:87

    Google Scholar 

  9. Brak R, Guttman AJ, Whittington SG (1991) J Math Chem 8:255

    Google Scholar 

  10. Silverberg M, Ben-Shaul A (1987) J Chem Phys 87:3178

    Google Scholar 

  11. Harary F (1960) Publ Math Inst Hungarian Acad Sci 5:63

    Google Scholar 

  12. Palmer EM (1972) Lecture Notes in Mathematics 303:215

    Google Scholar 

  13. Golomb SW (1965) Polyominoes. Scribner, NY

    Google Scholar 

  14. Klarner DA (1965) Fibonacci Quart 3:9

    Google Scholar 

  15. Delest M (1991) J Math Chem 8:3

    Google Scholar 

  16. Harary F (1964) Applied Combinatorics. Wiley, NY, p 200

    Google Scholar 

  17. Trinajstić N, Nikolić S, Knop JV, Müller WR, Szymanski K (1991) Computational chemical graph theory: Characterization, enumeration and generation of chemical structures by computer methods. Simon & Schuster, NY

    Google Scholar 

  18. Müller WR, Szymanski K, Knop JV, Nikolić S, Trinajstić N (1990) J Comput Chem 11:223

    Google Scholar 

  19. Nikolić S, Trinajstić N, Knop JV, Müller WR, Szymanski K (1990) J Math Chem 4:357

    Google Scholar 

  20. Knop JV, Müller WR, Szymanski K, Nikolić S, Trinajstić N (1991) in: Rouvray DH (ed) Computational chemical graph theory. Nova Science Publ, NY, p 9

    Google Scholar 

  21. Knop JV, Müller WR, Jeričević Ž, Trinajstić N (1981) J Chem Inf Comput Sci 21:91

    Google Scholar 

  22. Knop JV, Szymanski K, Jeričević Ž, Trinajstić N (1983) J Comput Chem 4:23

    Google Scholar 

  23. Klarner DA (1967) Can J Math 19:851

    Google Scholar 

  24. Read RC (1978) in: Beineke LW, Wilson RJ (eds) Selected topics in graph theory. Academic Press, London, p 417

    Google Scholar 

  25. Redelmeier DH (1981) Discrete Math 36:191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W.R., Szymanski, K., Knop, J.V. et al. On the number of square-cell configurations. Theoret. Chim. Acta 86, 269–278 (1993). https://doi.org/10.1007/BF01130823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130823

Key words

Navigation