Boiling liquid expanding vapor explosion

This is an old revision of this page, as edited by 137.122.49.102 (talk) at 15:06, 26 March 2014 (→‎See also: bypass redirect (town name includes dash)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A boiling liquid expanding vapor explosion (BLEVE, /ˈblɛv/ BLEV-ee) is an explosion caused by the rupture of a vessel containing a pressurized liquid above its boiling point.[1]

Flames subsequent to a flammable liquid BLEVE from a tanker. BLEVEs do not necessarily involve fire.

Mechanism

There are three characteristics of liquids which are relevant to the discussion of a BLEVE:

  1. If a liquid in a sealed container is boiled, the pressure inside the container increases. As the liquid changes to a gas it expands - this expansion in a vented container would cause the gas and liquid to take up more space. In a sealed container the gas and liquid are not able to take up more space and so the pressure rises. Pressurized vessels containing liquids can reach an equilibrium where the liquid stops boiling and the pressure stops rising. This occurs when no more heat is being added to the system (either because it has reached ambient temperature or has had a heat source removed).
  2. The boiling temperature of a liquid is dependent on pressure - high pressures will yield high boiling temperatures, and low pressures will yield low boiling temperatures. A common simple experiment is to place a cup of water in a vacuum chamber, and then reduce the pressure in the chamber until the water boils. By reducing the pressure the water will boil even at room temperature. This works both ways - if you increase the pressure beyond normal atmospheric pressures you could suppress the boiling of hot water far beyond normal temperatures. The cooling system of a modern internal combustion engine is a real-world example.
  3. When a liquid boils it turns into a gas. The resulting gas takes up far more space than the liquid did.

Typically, a BLEVE starts with a container of liquid which is held above its normal, atmospheric-pressure boiling temperature. Many substances normally stored as liquids, such as CO2, oxygen, and other similar industrial gases have boiling temperatures, at atmospheric pressure, far below room temperature. In the case of water, a BLEVE could occur if a pressurized chamber of water is heated far beyond the standard 100 °C (212 °F). That container, because the boiling water pressurizes it, is capable of holding liquid water at very high temperatures.

If the pressurized vessel, containing liquid at high temperature (which may be room temperature, depending on the substance) ruptures, the pressure which prevents the liquid from boiling is lost. If the rupture is catastrophic, where the vessel is immediately incapable of holding any pressure at all, then there suddenly exists a large mass of liquid which is at very high temperature and very low pressure. This causes the entire volume of liquid to instantaneously boil, which in turn causes an extremely rapid expansion. Depending on temperatures, pressures and the substance involved, that expansion may be so rapid that it can be classified as an explosion, fully capable of inflicting severe damage on its surroundings.

Water example

Imagine, for example, a tank of pressurized liquid water held at 204.4 °C (400 °F). This vessel would normally be pressurized to 1.7 MPa (250 psi) above atmospheric ("gauge") pressure. Were the tank containing the water to split open, there would momentarily exist a volume of liquid water which is

  • at atmospheric pressure, and
  • 204.4 °C (400 °F).

At atmospheric pressure the boiling point of water is 100 °C (212 °F) - liquid water at atmospheric pressure cannot exist at temperatures higher than 100 °C (212 °F). It is obvious, then, that 204.4 °C (400 °F) liquid water at atmospheric pressure must immediately flash to gas causing an explosion.

BLEVEs without chemical reactions

It is important to note that a BLEVE need not be a chemical explosion - nor does there need to be a fire - however if a flammable substance is subject to a BLEVE it may also be subject to intense heating, either from an external source of heat which may have caused the vessel to rupture in the first place or from an internal source of localized heating such as skin friction. This heating can cause a flammable substance to ignite, adding a secondary explosion caused by the primary BLEVE. While blast effects of any BLEVE can be devastating, a flammable substance such as propane can add significantly to the danger.

 

While the term BLEVE is most often used to describe the results of a container of flammable liquid rupturing due to fire, a BLEVE can occur even with a non-flammable substance such as water,[2] liquid nitrogen,[3] liquid helium or other refrigerants or cryogens, and therefore is not usually considered a type of chemical explosion.

Fires

BLEVEs can be caused by an external fire near the storage vessel causing heating of the contents and pressure build-up. While tanks are often designed to withstand great pressure, constant heating can cause the metal to weaken and eventually fail. If the tank is being heated in an area where there is no liquid, it may rupture faster without the liquid to absorb the heat. Gas containers are usually equipped with relief valves that vent off excess pressure, but the tank can still fail if the pressure is not released quickly enough.[1] Relief valves are sized to release pressure fast enough to prevent the pressure from increasing beyond the strength of the vessel, but not so fast as to be the cause of an explosion. An appropriately sized relief valve will allow the liquid inside to boil slowly, maintaining a constant pressure in the vessel until all the liquid has boiled and the vessel empties.

If the substance involved is flammable, it is likely that the resulting cloud of the substance will ignite after the BLEVE has occurred, forming a fireball and possibly a fuel-air explosion, also termed a vapor cloud explosion (VCE). If the materials are toxic, a large area will be contaminated.[4]

Incidents

The term "BLEVE" was coined by three researchers at Factory Mutual, in the analysis of an accident there in 1957 involving a chemical reactor vessel.[5]

In August 1959 the Kansas City Fire Department was hit with its largest ever loss of life in the line of duty, when a 25,000 gallon (95,000 litre) gas tank exploded during a fire on Southwest Boulevard killing five firefighters. This was the first time BLEVE was used to describe a burning fuel tank.[citation needed]

Later incidents included the Cheapside Street Whisky Bond Fire in Glasgow, Scotland in 1960; Feyzin, France in 1966; Crescent City, Illinois in 1970; Kingman, Arizona in 1973; a liquid nitrogen tank rupture[6] at Air Products and Chemicals and Mobay Chemical Company at New Martinsville, West Virginia on January 31, 1978 [1];Texas City, Texas in 1978; Murdock, Illinois in 1983; and San Juan Ixhuatepec, Mexico City in 1984.[7] In 2010 at Białystok, Poland a fire occurred after a train crash which caused two tank wagons of diesel fuel to explode.

In July 2013 a Montreal, Maine and Atlantic Railway train carrying 74 cars of Bakken formation crude oil derailed and exploded in Lac Mégantic, Quebec; wiping out the center of the town and killing 47. The resulting conflagration and BLEVE explosions were so intense that pictures taken[8] from the Visible Infrared Imaging Radiometer Suite satellite during the disaster shows the small town emitting as much Infrared light as Québec city. The effect on such a massively large explosion and resulting Firestorm in the middle of a small village of 5,932 was akin to a World War Two Firebombing or a Nuclear explosion, the temperature in the blast area reaching up to 3,000 degrees Celsius.

Safety measures

Some fire mitigation measures are listed under liquefied petroleum gas.

See also

References

  1. ^ a b Kletz, Trevor (March 1990). Critical Aspects of Safety and Loss Prevention. London: Butterworth–Heinemann. pp. 43–45. ISBN 0-408-04429-2.
  2. ^ "Temperature Pressure Relief Valves on Water Heaters: test, inspect, replace, repair guide". Inspect-ny.com. Retrieved 12 July 2011.
  3. ^ Liquid nitrogen BLEVE demo
  4. ^ "Chemical Process Safety" (PDF). Retrieved 12 July 2011.
  5. ^ David F. Peterson, BLEVE: Facts, Risk Factors, and Fallacies, Fire Engineering magazine (2002).
  6. ^ "STATE EX REL. VAPOR CORP. v. NARICK". Supreme Court of Appeals of West Virginia. 12 July 1984. Retrieved 16 March 2014.
  7. ^ "PEMEX LPG Terminal, Mexico City, Mexico. 19th November 1984: Accident summary". www.hse.gov.uk. 19 November 1984. Retrieved 12 July 2011.
  8. ^ "Train Derailment and Fire, Lac-Mégantic, Quebec". earthobservatory.nasa.gov. Retrieved 20 December 2013.