このガイドでは、選択したプラットフォームの Vertex AI in Firebase SDK を使用して、アプリから直接 Vertex AI Gemini API を呼び出す方法について説明します。
前提条件
ステップ 1: Firebase プロジェクトを設定してアプリを Firebase に接続する
Firebase プロジェクトと Firebase に接続されたアプリがすでにある場合
Firebase コンソールで、[Gemini でビルド] ページに移動します。
[Vertex AI in Firebase] カードをクリックして、次のタスクを完了するためのワークフローを開始します。
プロジェクトをアップグレードして、従量課金制の Blaze 料金プランを使用します。
プロジェクトで必要な API(Vertex AI API と Vertex AI in Firebase API)を有効にします。
このガイドの次のステップに進んで、SDK をアプリに追加します。
Firebase プロジェクトと Firebase に接続されたアプリがまだない場合
ステップ 2: SDK を追加する
Firebase プロジェクトが設定され、アプリが Firebase に接続されている(前の手順を参照)ので、アプリに Vertex AI in Firebase SDK を追加できます。
ステップ 3: Vertex AI サービスと生成モデルを初期化する
API 呼び出しを行う前に、Vertex AI サービスと生成モデルを初期化する必要があります。
スタートガイドを完了したら、Gemini モデルを選択する方法と、(必要に応じて)ユースケースとアプリに適したロケーションを選択する方法を学習する。
ステップ 4: Vertex AI Gemini API を呼び出す
アプリを Firebase に接続し、SDK を追加して���Vertex AI サービスと生成モデルを初期化したので、Vertex AI Gemini API を呼び出す準備ができました。
generateContent()
を使用して、テキストのみのプロンプト リクエストからテキストを生成できます。
Google アシスタントの機能
Gemini モデルの詳細
さまざまなユースケースで利用可能なモデルと、その割り当てと料金について学習する。
Gemini API のその他の機能を試す
- レスポンスのストリーミング方法など、テキストのみのプロンプトからのテキストの生成の詳細を確認する。
- マルチモーダル プロンプトからテキストを生成します(テキスト、画像、PDF、動画、音声など)。
- マルチターンの会話(チャット)を構築します。
- テキストとマルチモーダル プロンプトの両方から構造化出力(JSON など)を生成します。
- 関数呼び出しを使用して、生成モデルを外部システムと情報に接続します。
コンテンツ生成を制御する方法
- プロンプトの設計を理解する。ベスト プラクティス、戦略、プロンプトの例などをご覧ください。
- 温度や最大出力トークンなどのモデル パラメータを構成します。
- 安全性設定を使用すると、有害と見なされる可能性のある回答が生成される可能性を調整できます。
Vertex AI in Firebase の使用感に関するフィードバックを送信する