Un champ scalaire est une fonction de plusieurs variables qui associe un seul nombre (ou scalaire) à chaque point de l'espace. Les champs scalaires sont utilisés en physique pour représenter les variations spatiales de grandeurs scalaires.

Définition

modifier

Un champ scalaire est une forme[1].

 

ou

 

x est un vecteur de Rn.

Le champ scalaire peut être visualisé comme un espace à n dimensions avec un nombre complexe ou réel attaché à chaque point de l'espace.

La dérivée d'un champ scalaire résulte en un champ vectoriel appelé le gradient[2].

En physique, un champ est appelé champ scalaire quand la grandeur physique mesurable est caractérisée par une valeur numérique généralement suivie d'une unité.

Exemple

modifier
 
Un champ sur ℝ2 de la forme z = x2y2.

L'image à droite est une représentation graphique du champ scalaire suivant :

 

Le point en rouge est un point critique de la fonction, point où le gradient s'annule. Il s'agit ici en particulier d'un point-selle : il représente un maximum selon une direction et un minimum selon l'autre.

Usages en physique

modifier

Autres types de champs

modifier

Voir aussi

modifier

Références

modifier
  1. Christophe Cappe, Electromagnétisme: Cours avec exemples concrets, QCM, exercices corrigés, Dunod, (ISBN 978-2-10-079653-3, lire en ligne), p. 9-14
  2. Thierry Gourieux, « Annexe 5. Champs scalaires et gradient », References sciences,‎ , p. 307–311 (lire en ligne, consulté le )
  3. « Cours de Jean-Michel Raimond | Département de Physique de l'Ecole Normale supérieure », sur www.phys.ens.fr (consulté le )

Sur les autres projets Wikimedia :