-
Notifications
You must be signed in to change notification settings - Fork 178
/
tf_serve.py
42 lines (33 loc) · 1.3 KB
/
tf_serve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference logic."""
import tempfile
import numpy as np
import PIL
from tfserve import TFServeApp
RESNET_MODEL = '/root/tftrt_int8_resnetv2_imagenet_frozen_graph.pb'
INPUT_TENSOR = 'import/input_tensor:0'
SOFTMAX_TENSOR = 'import/softmax_tensor:0'
def encode(request_data):
with tempfile.NamedTemporaryFile(mode='wb', suffix='.jpg') as f:
f.write(request_data)
img = PIL.Image.open(f.name).resize((224, 224))
img = np.asarray(img) / 255.
return {INPUT_TENSOR: img}
def decode(outputs):
p = outputs[SOFTMAX_TENSOR]
index = np.argmax(p)
return {'class': str(index), 'prob': str(float(p[index]))}
app = TFServeApp(RESNET_MODEL, [INPUT_TENSOR], [SOFTMAX_TENSOR], encode, decode)
app.run('0.0.0.0', 5000)