-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
recurrent_neural_network.py
89 lines (73 loc) · 3.15 KB
/
recurrent_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from mlfromscratch.deep_learning import NeuralNetwork
from mlfromscratch.utils import train_test_split, to_categorical, normalize, Plot
from mlfromscratch.utils import get_random_subsets, shuffle_data, accuracy_score
from mlfromscratch.deep_learning.optimizers import StochasticGradientDescent, Adam, RMSprop, Adagrad, Adadelta
from mlfromscratch.deep_learning.loss_functions import CrossEntropy
from mlfromscratch.utils.misc import bar_widgets
from mlfromscratch.deep_learning.layers import RNN, Activation
def main():
optimizer = Adam()
def gen_mult_ser(nums):
""" Method which generates multiplication series """
X = np.zeros([nums, 10, 61], dtype=float)
y = np.zeros([nums, 10, 61], dtype=float)
for i in range(nums):
start = np.random.randint(2, 7)
mult_ser = np.linspace(start, start*10, num=10, dtype=int)
X[i] = to_categorical(mult_ser, n_col=61)
y[i] = np.roll(X[i], -1, axis=0)
y[:, -1, 1] = 1 # Mark endpoint as 1
return X, y
def gen_num_seq(nums):
""" Method which generates sequence of numbers """
X = np.zeros([nums, 10, 20], dtype=float)
y = np.zeros([nums, 10, 20], dtype=float)
for i in range(nums):
start = np.random.randint(0, 10)
num_seq = np.arange(start, start+10)
X[i] = to_categorical(num_seq, n_col=20)
y[i] = np.roll(X[i], -1, axis=0)
y[:, -1, 1] = 1 # Mark endpoint as 1
return X, y
X, y = gen_mult_ser(3000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
# Model definition
clf = NeuralNetwork(optimizer=optimizer,
loss=CrossEntropy)
clf.add(RNN(10, activation="tanh", bptt_trunc=5, input_shape=(10, 61)))
clf.add(Activation('softmax'))
clf.summary("RNN")
# Print a problem instance and the correct solution
tmp_X = np.argmax(X_train[0], axis=1)
tmp_y = np.argmax(y_train[0], axis=1)
print ("Number Series Problem:")
print ("X = [" + " ".join(tmp_X.astype("str")) + "]")
print ("y = [" + " ".join(tmp_y.astype("str")) + "]")
print ()
train_err, _ = clf.fit(X_train, y_train, n_epochs=500, batch_size=512)
# Predict labels of the test data
y_pred = np.argmax(clf.predict(X_test), axis=2)
y_test = np.argmax(y_test, axis=2)
print ()
print ("Results:")
for i in range(5):
# Print a problem instance and the correct solution
tmp_X = np.argmax(X_test[i], axis=1)
tmp_y1 = y_test[i]
tmp_y2 = y_pred[i]
print ("X = [" + " ".join(tmp_X.astype("str")) + "]")
print ("y_true = [" + " ".join(tmp_y1.astype("str")) + "]")
print ("y_pred = [" + " ".join(tmp_y2.astype("str")) + "]")
print ()
accuracy = np.mean(accuracy_score(y_test, y_pred))
print ("Accuracy:", accuracy)
training = plt.plot(range(500), train_err, label="Training Error")
plt.title("Error Plot")
plt.ylabel('Training Error')
plt.xlabel('Iterations')
plt.show()
if __name__ == "__main__":
main()