login
A065298
a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) properly contained in the digits of a(n+1)^2, with a(0)=2.
5
2, 7, 43, 136, 367, 1157, 3658, 10183, 32193, 101407, 320537, 1001842, 3166463, 10001923, 31627114, 100017313, 316599084, 1000104687, 3162331407, 10000483663
OFFSET
0,1
COMMENTS
a(n) for n>0 remains the same when a(0)=3.
EXAMPLE
43^2 = 1849 and 136 is the next smallest number whose square (in this case 18496) properly contains the digits 1,4,8,9.
CROSSREFS
KEYWORD
base,nonn,more
AUTHOR
Floor van Lamoen, Oct 29 2001
EXTENSIONS
More terms from Marc Paulhus, Feb 04 2002
a(18)-a(19) from Sean A. Irvine, Aug 26 2023
STATUS
approved