login
A067756
Prime hypotenuses of Pythagorean triangles with a prime leg.
18
5, 13, 61, 181, 421, 1741, 1861, 2521, 3121, 5101, 8581, 9661, 16381, 19801, 36721, 60901, 71821, 83641, 100801, 106261, 135721, 161881, 163021, 199081, 205441, 218461, 273061, 282001, 337021, 388081, 431521, 491041, 531481, 539761, 552301
OFFSET
1,1
COMMENTS
Apart from the first two terms, every term is congruent to 1 modulo 60 and is of the form 450k^2 +- 30k + 1 or 450k^2 +- 330k + 61 for some k.
Every term of the sequence after the second is a prime p congruent to 1 (mod 60), i.e., for n > 2, a(n) is a subsequence of A088955. The Pythagorean triple is {sqrt(2p-1), p-1, p}. - Lekraj Beedassy, Mar 12 2002
Primes p such that 2*p-1 is the square of a prime. - Robert Israel, Sep 16 2014
Primes p of the form ((q+1)/2)^2 + ((q-1)/2)^2, where q is a prime; then q belongs to A048161. - Thomas Ordowski, May 22 2015
The other (i.e., long) leg of the Pythagorean triangle is p-1. - Zak Seidov, Oct 30 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (first 184 terms from Andreas Boe)
H. Dubner and T. Forbes, Prime Pythagorean triangles, J. Integer Seqs., Vol. 4 (2001), #01.2.3.
FORMULA
a(n) = (A048161(n)^2 + 1)/2 = A067755(n) + 1.
EXAMPLE
For a(1)=5, the right triangle is 3, 4, 5 with 3 and 5 prime.
For a(10)=5101, the right triangle is 101, 5100, 5101 with 101 and 5101 prime.
MAPLE
N:= 10^8: # to get all terms <= N
Primes:= select(isprime, [$3..floor(sqrt(2*N-1))]):
f:= proc(p) local q; q:= (p^2+1)/2; if isprime(q) then q else NULL fi end proc:
map(f, Primes); # Robert Israel, Sep 16 2014
MATHEMATICA
f[n_]:=((p-1)/2)^2+((p+1)/2)^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, f[p]]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 27 2009 *)
PROG
(PARI) forprime(p=3, 10^3, if(isprime(q=(p^2+1)/2), print1(q, ", "))) \\ Derek Orr, Apr 30 2015
CROSSREFS
Contains every value of A051859.
Sequence in context: A092773 A230444 A319249 * A284035 A051859 A151275
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jan 31 2002
STATUS
approved