login
A344179
Jordan-Polya numbers (A001013) not in A344181.
3
72, 216, 432, 1296, 1728, 2592, 5184, 7776, 10368, 14400, 15552, 28800, 31104, 41472, 46656, 51840, 57600, 62208, 93312, 115200, 120960, 124416, 155520, 186624, 230400, 248832, 279936, 311040, 373248, 460800, 559872, 604800, 746496, 921600, 933120, 995328, 1088640, 1119744, 1209600, 1244160, 1492992, 1679616, 1728000
OFFSET
1,1
COMMENTS
These are numbers that are products of factorial numbers (A000142), but whose presence in A001013 cannot be determined by a simple greedy algorithm that repeatedly divides the largest factorial divisor [= A055874(n)!] off, until only 1 remains.
EXAMPLE
72 = 2*6*6 = 2! * 3! * 3! is present in A001013, and as it is not present in A344181 (because when it is divided by its largest factorial divisor 24, we get 72/24 = 3, an odd number that is not a factorial itself), it is therefore present in this sequence.
MATHEMATICA
fct = Array[#! &, 10]; prev = {}; jp = fct; While[jp != prev, prev = jp; jp = Select[Union @@ Outer[Times, jp, fct], # <= fct[[-1]] &]]; fctdiv[n_] := Module[{m = 1, k = 1}, While[Divisible[n, m], k++; m *= k]; m /= k; n/m]; Select[jp, FixedPoint[fctdiv, #] != 1 &] (* Amiram Eldar, May 22 2021 *)
PROG
(PARI)
search_up_to = 2^22;
A076934(n) = for(k=2, oo , if(n%k, return(n), n /= k));
A093411(n) = if(!n, n, if(n%2, n, A093411(A076934(n))));
A001013list(lim, mx=lim)=if(lim<2, return([1])); my(v=[1], t=1); for(n=2, mx, t*=n; if(t>lim, break); v=concat(v, t*A001013list(lim\t, t))); Set(v) \\ From A001013
v001013 = A001013list(search_up_to);
A001013(n) = v001013[n];
isA344179(n) = if(v001013[#v001013]<n, -(1/0), ((1!=A093411(n))&&vecsearch(v001013, n)));
for(n=1, search_up_to, if(isA344179(n), print1(n, ", ")));
CROSSREFS
Setwise difference of A001013 and A344181.
Sequence in context: A204492 A204485 A358514 * A050498 A077535 A339994
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 18 2021
STATUS
approved