Health effects of coffee
The health effects of coffee include various possible health benefits and health risks.[1]
A 2017 umbrella review of meta-analyses found that drinking coffee is generally safe within usual levels of intake and is more likely to improve health outcomes than to cause harm at doses of 3 or 4 cups of coffee daily. Exceptions include possible increased risk in women having bone fractures, and a possible increased risk in fetal loss or decreased birth weight during pregnancy.[2] Results were complicated by poor study quality, and differences in age, gender, health status, and serving size.[2]
Digestion
[edit]A 1999 review found that coffee does not cause indigestion, but may promote gastrointestinal reflux.[3] Two reviews of clinical studies on people recovering from abdominal, colorectal, and gynecological surgery found that coffee consumption was safe and effective for enhancing postoperative gastrointestinal function.[4][5]
In some people, coffee induces defecation within minutes of consumption.[5][6][7][8] However, the specific mechanism of action and chemical constituents responsible are still unknown.[9]
Mortality
[edit]A 2014 meta-analysis found that coffee consumption (4 cups/day) was inversely associated with all-cause mortality (a 16% lower risk), as well as cardiovascular disease mortality specifically (a 21% lower risk from drinking 3 cups/day), but not with cancer mortality[10] with exception being oral cancer mortality.[11]
Additional meta-analyses corroborated these findings, showing that higher coffee consumption (2–4 cups per day) was associated with a reduced risk of death by all disease causes.[12][13]
Cardiovascular disease
[edit]Moderate coffee consumption is not a risk factor for coronary heart disease.[14]
A 2012 meta-analysis concluded that people who drank moderate amounts of coffee had a lower rate of heart failure, with the biggest effect found for those who drank more than four cups a day.[15] A 2014 meta-analysis concluded that cardiovascular disease, such as coronary artery disease and stroke, is less likely with three to five cups of non-decaffeinated coffee per day, but more likely with over five cups per day.[16] A 2016 meta-analysis showed that coffee consumption was associated with a reduced risk of death in patients who have had a myocardial infarction.[17] The effect of no or moderate daily consumption of coffee on risk for developing hypertension has been assessed in several reviews during the 21st century. A 2019 review found that one to two cups consumed per day had no effect on hypertension risk, whereas drinking three or more cups per day reduced the risk,[18] a finding in agreement with a 2017 analysis which showed a 9% lower risk of hypertension with long-term consumption of up to seven cups of coffee per day.[19] Another review in 2018 found that the risk of hypertension was reduced by 2% with each one cup per day increment of coffee consumption up to 8 cups per day, compared with people who did not consume any coffee.[20]
A large 2024 study,[21] involving close to two hundred thousand participants using the UK Biobank, indicated that a habitual caffeine intake, at moderate levels of 200 mg - 300 mg of caffeine per day "was associated with a lower risk of new-onset CM [Cardiometabolic multimorbidity] and could play important roles in almost all transition phases of CM development." In particular, the study found that metabolites related to very low-density lipoproteins were reduced with higher metabolites related to high-density lipoproteins. The study found any caffeine intake in general reduced risks of CM, although did not find strong evidence that tea reduced the risk of stroke and Type 2 Diabetes.
By contrast, a 2011 review had found that drinking one to three cups of coffee per day may pose a slightly increased risk of developing hypertension.[22]
The 2021 European Society of Cardiology Guidelines on Cardiovascular Disease Prevention in Clinical Practice state: "Non-filtered coffee contains LDL-C-raising cafestol and kahweol, and may be associated with an up to 25% increased risk of atherosclerosis (ASCVD) mortality by consumption of nine or more drinks a day. Non-filtered coffee includes boiled, Greek, and Turkish coffee and some espresso coffees. Moderate coffee consumption (3–4 cups per day) is probably not harmful, perhaps even moderately beneficial".[23]
Parkinson's disease
[edit]Meta-analyses have consistently found that long-term coffee consumption is associated with a lower risk of Parkinson's disease.[2]
Type II diabetes
[edit]In a systematic review and meta-analysis of 28 prospective observational studies, representing over one million participants, every additional cup of caffeinated and decaffeinated coffee consumed in a day was associated, respectively, with a 9% and 6% lower risk of type 2 diabetes.[24]
Cancer
[edit]Meta-analyses on the effects of coffee consumption on cancer risk are inconclusive.[25][26][27]
The World Health Organization's 2016 IARC Monograph "found no conclusive evidence for a carcinogenic effect of drinking coffee" but found that drinking very hot beverages probably causes cancer of the oesophagus.[28]
Liver disease
[edit]According to The British Liver Trust, regular consumption of coffee may support liver health and reduce the risk of some liver diseases.[29]
Mental health
[edit]The UK National Health Service advises that avoiding coffee may reduce anxiety.[30] In chronic psychiatric patients, caffeine, the major active ingredient in coffee, is associated with anxiety.[31][32] At high doses, typically greater than 300 mg, caffeine can both cause and worsen anxiety.[33] For some people, discontinuing caffeine use can significantly reduce anxiety.[34] Caffeine-induced anxiety disorder is a subclass of substance- or medication-induced anxiety disorder.[35] Populations that may be most impacted by caffeine consumption are adolescents and people with anxiety disorders.[36] Preliminary research indicated the possibility of a beneficial relationship between coffee intake and reduced depression.[2][37][38] Long-term preliminary research, including assessment of symptoms for dementia and cognitive impairment, was inconclusive for coffee having an effect in the elderly, mainly due to the poor quality of the studies.[2][39]
See also
[edit]References
[edit]- ^ Myhrvold, Nathan (2024-06-08) [1999-07-26]. "Coffee - Brewing, Roasting, Varieties". In The Editors of Encyclopaedia Britannica (ed.). Britannica. Archived from the original on 2024-07-14. Retrieved 2023-07-09.
- ^ a b c d e Poole, Robin; Kennedy, Oliver J.; Roderick, Paul; Fallowfield, Jonathan A.; Hayes, Peter C.; Parkes, Julie (2017-11-22) [2017-10-16]. "Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes". BMJ. 359: j5024. doi:10.1136/bmj.j5024. PMC 5696634. PMID 29167102. Errata
- ^ Boekema, Paul J.; Samsom, Melvin; van Berge Henegouwen, Gerard P.; Smout, André J. P. M. (1999-07-08). "Coffee and gastrointestinal function: facts and fiction. A review". Scandinavian Journal of Gastroenterology. Supplement. 34 (230): 35–39. doi:10.1080/003655299750025525. PMID 10499460. S2CID 22935422.
- ^ Cornwall, Hannah L.; Edwards, Ben A.; Curran, John F.; Boyce, Stephen (May 2020) [2019-06-13]. "Coffee to go? The effect of coffee on resolution of ileus following abdominal surgery: A systematic review and meta-analysis of randomised controlled trials". Clinical Nutrition. 39 (5): 1385–1394. doi:10.1016/j.clnu.2019.06.003. PMID 31253438. S2CID 195766007.
- ^ a b Eamudomkarn, Nuntasiri; Kietpeerakool, Chumnan; Kaewrudee, Srinaree; Jampathong, Nampet; Ngamjarus, Chetta; Lumbiganon, Pisake (2018-11-26). "Effect of postoperative coffee consumption on gastrointestinal function after abdominal surgery: A systematic review and meta-analysis of randomized controlled trials". Scientific Reports. 8 (1). 17349. Bibcode:2018NatSR...817349E. doi:10.1038/s41598-018-35752-2. PMC 6255780. PMID 30478433.
- ^ Sloots, Cornelius E. J.; Felt-Bersma, Richelle J. F.; West, Rachel L.; Kuipers, Ernst J. (2005) [2004-05-30]. "Stimulation of defecation: Effects of coffee use and nicotine on rectal tone and visceral sensitivity". Scandinavian Journal of Gastroenterology. 40 (7): 808–813. doi:10.1080/00365520510015872. PMID 16109656. S2CID 23622961.
- ^ Dulskas, Audrius; Klimovskij, Michail; Vitkauskiene, Marija; Samalavicius, Narimantas E. (November 2015). "Effect of Coffee on the Length of Postoperative Ileus After Elective Laparoscopic Left-Sided Colectomy". Diseases of the Colon & Rectum. 58 (11): 1064–1069. doi:10.1097/DCR.0000000000000449. PMID 26445179. S2CID 45213244.
- ^ Nehlig, Astrid (2022-01-17) [2022-01-14, 2022-01-10, 2021-12-13]. "Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update". Nutrients. 14 (2): 399. doi:10.3390/nu14020399. PMC 8778943. PMID 35057580.
- ^ Francis, Ali (2023-08-18). "Why Does Coffee Make You Poop?". Bon Appétit. Archived from the original on 2023-08-20. Retrieved 2023-10-27.
- ^ Crippa, Alessio; Discacciati, Andrea; Larsson, Susanna C.; Wolk, Alicja; Orsini, Nicola (2014-10-15) [2014-08-24]. "Coffee Consumption and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Dose-Response Meta-Analysis". American Journal of Epidemiology. 180 (8): 763–775. doi:10.1093/aje/kwu194. PMID 25156996.
- ^ Hildebrand, Janet S.; Patel, Alpa V.; McCullough, Marjorie L.; Gaudet, Mia M.; Chen, Amy Y.; Hayes, Richard B.; Gapstur, Susan M. (2013-01-01) [2012-12-09]. "Coffee, Tea, and Fatal Oral/Pharyngeal Cancer in a Large Prospective US Cohort". American Journal of Epidemiology. 177 (1): 50–58. doi:10.1093/aje/kws222. PMID 23230042.
- ^ Je, Youjin; Giovannucci, Edward (2014-04-14) [2013-11-27]. "Coffee consumption and total mortality: a meta-analysis of twenty prospective cohort studies". The British Journal of Nutrition. 111 (7). Cambridge University Press: 1162–1173. doi:10.1017/S0007114513003814. PMID 24279995. Archived from the original on 2022-08-31. Retrieved 2022-02-23.
- ^ Zhao, Yimin; Wu, Kejian; Zheng, Jusheng; Zuo, Ruiting; Li, Duo (May 2015) [2014-08-04]. "Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis". Public Health Nutrition. 18 (Supplement 7). Cambridge University Press: 1282–1291. doi:10.1017/S1368980014001438. PMC 10271516. PMID 25089347.
- ^ Wu, Jiang-nan; Ho, Suzanne C.; Zhou, Chun; Ling, Wen-hua; Chen, Wei-qing; Wang, Cui-ling; Chen, Yu-ming (November 2009) [2008-08-19]. "Coffee consumption and risk of coronary heart diseases: a meta-analysis of 21 prospective cohort studies". International Journal of Cardiology. 137 (3): 216–225. doi:10.1016/j.ijcard.2008.06.051. PMID 18707777.
- ^ Mostofsky, Elizabeth; Rice, Megan S.; Levitan, Emily B.; Mittleman, Murray A. (July 2012) [2012-06-26]. "Habitual Coffee Consumption and Risk of Heart Failure: A Dose-Response Meta-Analysis". Circulation: Heart Failure. 5 (4): 401–405. doi:10.1161/CIRCHEARTFAILURE.112.967299. PMC 3425948. PMID 22740040.
- ^ Ding, Ming; Bhupathiraju, Shilpa N.; Satija, Ambika; van Dam, Rob M.; Hu, Frank B. (February 2014) [2013-11-07]. "Long-Term Coffee Consumption and Risk of Cardiovascular Disease: A Systematic Review and a Dose–Response Meta-Analysis of Prospective Cohort Studies". Circulation. 129 (6): 643–659. doi:10.1161/circulationaha.113.005925. PMC 3945962. PMID 24201300.
- ^ Brown, Oliver I.; Allgar, Victoria; Wong, Kenneth Y.-K. (November 2016). "Coffee reduces the risk of death after acute myocardial infarction: a meta-analysis". Coronary Artery Disease. 27 (7): 566–572. doi:10.1097/MCA.0000000000000397. PMID 27315099. S2CID 7980392. Archived from the original on 2022-04-02. Retrieved 2022-02-23.
- ^ D'Elia, Lanfranco; La Fata, Ersilia; Galletti, Ferruccio; Scalfi, Luca; Strazzullo, Pasquale (February 2019) [2017-02-08]. "Coffee consumption and risk of hypertension: a dose-response meta-analysis of prospective studies". European Journal of Nutrition. 58 (1): 271–280. doi:10.1007/s00394-017-1591-z. PMID 29222637. S2CID 7264285. Archived from the original on 2020-11-06. Retrieved 2020-09-29.
- ^ Grosso, Giuseppe; Micek, Agnieszka; Godos, Justyna; Pajak, Andrzej; Sciacca, Salvatore; Bes-Rastrollo, Maira; Galvano, Fabio; Martinez-Gonzalez, Miguel A. (2017-08-17) [2017-08-10, 2017-08-09, 2017-05-29]. "Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis". Nutrients. 9 (8): 890. doi:10.3390/nu9080890. PMC 5579683. PMID 28817085.
- ^ Xie, Chen; Cui, Lingling; Zhu, Jicun; Wang, Kehui; Sun, Nan; Sun, Changqing (February 2018) [2018-01-18]. "Coffee consumption and risk of hypertension: a systematic review and dose-response meta-analysis of cohort studies". Journal of Human Hypertension. 32 (2): 83–93. doi:10.1038/s41371-017-0007-0. PMID 29302055. S2CID 3515374.
- ^ Lu, Xujia; Zhu, Xiaohong; Li, Guochen; Wu, Luying; Shao, Liping; Fan, Yulong; Pan, Chen-Wei; Wu, Ying; Borné, Yan; Ke, Chaofu (2024-09-17). "Habitual Coffee, Tea, and Caffeine Consumption, Circulating Metabolites, and the Risk of Cardiometabolic Multimorbidity". The Journal of Clinical Endocrinology & Metabolism. doi:10.1210/clinem/dgae552.
- ^ Zhang, Zhenzhen; Hu, Gang; Caballero, Benjamin; Appel, Lawrence; Chen, Liwei (June 2011) [2011-03-30, 2011-03-07, 2010-09-09]. "Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies". The American Journal of Clinical Nutrition. 93 (6): 1212–1219. doi:10.3945/ajcn.110.004044. PMID 21450934.
- ^ Visseren, Frank L. J.; Mach, François; Smulders, Yvo M.; Carballo, David; Koskinas, Konstantinos C.; Bäck, Maria; Benetos, Athanase; Biffi, Alessandro; Boavida, José-Manuel; Capodanno, Davide; Cosyns, Bernard; Crawford, Carolyn; Davos, Constantinos H.; Desormais, Ileana; Di Angelantonio, Emanuele; Franco, Oscar H.; Halvorsen, Sigrun; Hobbs, F. D. Richard; Hollander, Monika; Jankowska, Ewa A.; Michal, Matthias; Sacco, Simona; Sattar, Naveed; Tokgozoglu, Lale; Tonstad, Serena; Tsioufis, Konstantinos P.; van Dis, Ineke; van Gelder, Isabelle C.; Wanner, Christoph; Williams, Bryan (2021-09-07) [2021-08-30]. "2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC)". European Heart Journal. 42 (34): 3227–3337. doi:10.1093/eurheartj/ehab484. PMID 34458905.
- ^ Ding, Ming; Bhupathiraju, Shilpa N.; Chen, Mu; van Dam, Rob M.; Hu, Frank B. (2014-01-11). "Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-analysis". Diabetes Care (Systematic Review & Meta-Analysis). 37 (2): 569–586. doi:10.2337/dc13-1203. PMC 3898757. PMID 24459154.
- ^ Akter, Shamima; Kashino, Ikuko; Mizoue, Tetsuya; Matsuo, Keitaro; Ito, Hidemi; Wakai, Kenji; Nagata, Chisato; Nakayama, Tomio; Sadakane, Atsuko; Tanaka, Keitaro; Tamakoshi, Akiko; Sugawara, Yumi; Sawada, Norie; Inoue, Manami; Tsugane, Shoichiro; Sasazuki, Shisuka (2016-08-02). "Coffee drinking and colorectal cancer risk: an evaluation based on a systematic review and meta-analysis among the Japanese population". Japanese Journal of Clinical Oncology. 46 (8): 781–787. doi:10.1093/jjco/hyw059. PMID 27174958. Archived from the original on 2019-09-29. Retrieved 2019-09-24.
- ^ Bravi, Francesca; Tavani, Alessandra; Bosetti, Cristina; Boffetta, Paolo; la Vecchia, Carlo (2017-09-01). "Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies". European Journal of Cancer Prevention. 26 (5): 368–377. doi:10.1097/cej.0000000000000252. PMID 27111112. S2CID 25243023.
- ^ Zhao, Long-Gang; Li, Zhuo-Ying; Feng, Guo-Shan; Ji, Xiao-Wei; Tan, Yu-Ting; Li, Hong-Lan; Gunter, Marc J.; Xiang, Yong-Bing (2020-02-20). "Coffee drinking and cancer risk: an umbrella review of meta-analyses of observational studies". BMC Cancer. 20 (1): 101. doi:10.1186/s12885-020-6561-9. PMC 7003434. PMID 32024485.
- ^ "IARC Monographs evaluate drinking coffee, maté, and very hot beverages" (PDF). World Health Organization. 2016-06-15. Archived (PDF) from the original on 2024-09-02.
- ^ "Coffee and the liver". The British Liver Trust. 2024. Retrieved 2024-10-26.
- ^ "Self-help: Generalised anxiety disorder in adults". UK: National Health Service. 2018-12-19. Archived from the original on 2019-01-27. Retrieved 2019-01-27.
- ^ Winston, Anthony P.; Hardwick, Elizabeth; Jaberi, Neema (2005). "Neuropsychiatric effects of caffeine". Advances in Psychiatric Treatment. 11 (6). Cambridge University Press: 432–439. doi:10.1192/apt.11.6.432.
- ^ Vilarim, Marina Machado; Rocha Araujo, Daniele Marano; Nardi, Antonio Egidio (August 2011). "Caffeine challenge test and panic disorder: a systematic literature review". Expert Review of Neurotherapeutics . 11 (8). Taylor & Francis: 1185–1195. doi:10.1586/ern.11.83. ISSN 1473-7175. PMID 21797659. S2CID 5364016.
- ^ Smith, Andrew P. (October 2002) [September 2002]. "Effects of caffeine on human behavior". Food and Chemical Toxicology. 40 (9): 1243–1255. doi:10.1016/S0278-6915(02)00096-0. PMID 12204388.
- ^ Bruce, Malcom S.; Lader, Malcom H. (February 1989). "Caffeine abstention in the management of anxiety disorders". Psychological Medicine. 19 (1): 211–214. doi:10.1017/S003329170001117X. PMID 2727208. S2CID 45368729.
- ^ Addicott, Merideth A. (September 2014) [2014-05-28]. Grant, Jon E. (ed.). "Caffeine Use Disorder: A Review of the Evidence and Future Implications". Current Addiction Reports - Addictive Disorders in DSM-5. 1 (3): 186–192. doi:10.1007/s40429-014-0024-9. PMC 4115451. PMID 25089257.
- ^ O'Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K. (May 2016) [2016-02-11, 2016-02-01, 2016-01-29, 2015-09-01]. "Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling". Psychoneuroendocrinology. 67: 40–50. doi:10.1016/j.psyneuen.2016.01.030. PMC 4808446. PMID 26874560.
- ^ Wang, Longfei; Shen, Xiaoli; Wu, Yili; Zhang, Dongfei (March 2016) [2015-09-02]. "Coffee and caffeine consumption and depression: A meta-analysis of observational studies". The Australian and New Zealand Journal of Psychiatry. 50 (3): 228–242. doi:10.1177/0004867415603131. PMID 26339067. S2CID 23377304.
- ^ Grosso, Giuseppe; Micek, Agnieszka; Castellano, Sabrina; Pajak, Andzrej; Galvano, Fabio (January 2016) [2015-10-31]. "Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies". Molecular Nutrition & Food Research. 60 (1): 223–234. doi:10.1002/mnfr.201500620. PMID 26518745.
- ^ Panza, Francesco; Solfrizzi, Vincenzo; Barulli, Maria Rosaria; Bonfiglio, Caterina; Guerra, Vito; Osella, Alberto Rubén; Seripa, Davide; Sabbà, Carlo; Pilotto, Alberto; Logroscino, Giancarlo (March 2015) [December 2014]. "Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review". The Journal of Nutrition, Health & Aging. 19 (3): 313–328. doi:10.1007/s12603-014-0563-8. hdl:11586/145493. PMID 25732217. S2CID 8376733.
Further reading
[edit]- Folmer, Britta; Farah, Adriana; Jones, Lawrence; Fogliano, Vincenzo (2017). "Chapter 20. Human Wellbeing - Sociability, Performance, and Health: 20.4. Coffee and Health". Written at Nestlé Nespresso SA, Switzerland. In Folmer, Britta; Blank, Imre; Farah, Adriana; Giuliano, Peter; Sanders, Dean; Wille, Chris (eds.). The Craft and Science of Coffee (1 ed.). London, UK: Academic Press / Elsevier Inc. pp. 506–510. ISBN 978-0-12-803520-7. Archived (PDF) from the original on 2024-07-05. Retrieved 2024-02-15. (xxvi+529+5 pages)