skip to main content
10.5555/1778453.1778455guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Web intelligence meets brain informatics

Published: 15 December 2006 Publication History

Abstract

In this chapter, we outline a vision of Web Intelligence (WI) research from the viewpoint of Brain Informatics (BI), a new interdisciplinary field that systematically studies the mechanisms of human information processing from both the macro and micro viewpoints by combining experimental cognitive neuroscience with advanced information technology. BI studies human brain from the viewpoint of informatics (i.e., human brain is an information processing system) and uses informatics (i.e., WI centric information technology) to support brain science study. Advances in instrumentation, e.g., based on fMRI and information technologies offer more opportunities for research in both Web intelligence and brain sciences. Further understanding of human intelligence through brain sciences fosters innovative Web intelligence research and development. WI portal techniques provide a powerful new platform for brain sciences. The synergy between WI and BI advances our ways of analyzing and understanding of data, knowledge, intelligence, and wisdom, as well as their interrelationships, organizations, and creation processes. Web intelligence is becoming a central field that revolutionizes information technologies and artificial intelligence to achieve human-level Web intelligence.

References

[1]
Ahl, V., Allen, T.F.H.: Hierarchy Theory, a Vision, Vocabulary and Epistemology. Columbia University Press (1996).
[2]
Allen, T.F.: A Summary of the Principles of Hierarchy Theory, (accessed March 11, 2005), http://www.isss.org/hierarchy.htm
[3]
Anderson, J.R., Bothell, D., Byne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An Integrated Theory of the Mind. Psychological Review 111(4), 1036-1060 (2004).
[4]
Bak, P.: How NatureWorks: The Science of Self-Organised Criticality. Copernicus Press (1996).
[5]
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002).
[6]
Bargiela, A., Pedrycz, W.: The Roots of Granular Computing. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 806-809 (2006).
[7]
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284, 34-43 (2001).
[8]
Cai, C., Kochiyama, T., Osaka, K., Wu, J.: Lexical/Semantic Processing in Dorsal Left Inferior Frontal Gyrus. NeuroReport (in press, 2007).
[9]
Cannataro, M., Talia, D.: The Knowledge Grid. Communications of the ACM 46, 89-93 (2003).
[10]
Chen, Y.H., Yao, Y.Y.: Multiview intelligent data analysis based on granular computing. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 281-286 (2006).
[11]
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J.K., Holyoak, K.J., Gabrieli, J.D.E.: Rostrolateral Prefrontal Cortex Involvement in Relational Integration During Reasoning. NeuroImage 14(5), 1136-1149 (2001).
[12]
Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001).
[13]
Fensel, D., Harmelen, F.: Unifying Reasoning and Search to Web Scale. IEEE Internet Computing 11(2), 94-96 (2007).
[14]
Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999).
[15]
Gazzaniga, M.S., Smylie, C.S.: Dissociation of Language and Cognition. Brain 107(1), 145-153 (1984).
[16]
Gazzaniga, M.S.: The Mind's Past. University of California Press, Berkeley, CA (1998).
[17]
Gazzaniga, M.S. (ed.): The Cognitive Neurosciences III. MIT Press, Cambridge (2004).
[18]
Goel, V., Gold, B., Kapur, S., Houle, S.: The Seats of Reason? An Imaging Study of Deductive and Inductive Reasoning. NeuroReport 8(5), 1305-1310 (1997).
[19]
Goel, V., Dolan, R.J.: Anatomical Segregation of Component Processes in an Inductive Inference Task. Journal of Cognitive Neuroscience 12(1), 1-10 (2000).
[20]
Goel, V., Dolan, R.J.: Differential Involvement of Left Prefrontal Cortex in Inductive and Deductive Reasoning. Cognition 93(3), B109-B121 (2004).
[21]
Handy, T.C.: Event-Related Potentials, A Methods Handbook. The MIT Press, Cambridge (2004).
[22]
Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt and Company, New York (2004).
[23]
Hobbs, J.R.: Granularity. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 432-435 (1985).
[24]
Hu, J., Zhong, N.: Organizing Multiple Data Sources for Developing Intelligent e-Business Portals. Data Mining and Knowledge Discovery 12(2-3), 127-150 (2006).
[25]
Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Springer, Berlin (2003).
[26]
Kauffman, S.: At Home in the Universe: the Search for Laws of Complexity. Oxford University Press, Oxford (1996).
[27]
Koslow, S.H., Subramaniam, S. (eds.): Databasing the Brain: From Data to Knowledge. Wiley, Chichester (2005).
[28]
Laird, J.E., van Lent, M.: Human-Level AI's Killer Application Interactive Computer Games. AI Magazine, 15-25 (2001).
[29]
Li, C., Kochiyama, T., Wu, J., Chui, D., Tsuge, T., Osaka, K.: Attention Systems and Neural Responses to Visual and Auditory Stimuli: an fMRI Study. In: Proc. 2007 IEEE/ICME International Conference on Complex Medical Engineering, pp. 1515-1519 (2007).
[30]
Li, Y., Zhong, N.: Mining Ontology for Automatically Acquiring Web User Information Needs. IEEE Transactions on Knowledge and Data Engineering 18(4), 554-568 (2006).
[31]
Liang, P., Zhong, N., Wu, J.L., Lu, S., Liu, J., Yao, Y.Y.: Time Dissociative Characteristics of Numerical Inductive Reasoning: Behavioral and ERP Evidence. In: Proc 2007 International Joint Conference on Neural Networks (IJCNN 2007), IEEE Press (in press, 2007).
[32]
Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg (2002).
[33]
Liu, J., Tang, Y.Y., Cao, Y.C.: An Evolutionary Autonomous Agents Approach to Image Feature Extraction. IEEE Transaction on Evolutionary Computation 1(2), 141-158 (1997).
[34]
Liu, J.: Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-Organization, and Adaptive Computation. World Scientific, Singapore (2001).
[35]
Liu, J., Han, J., Tang, Y.Y.: Multi-agent Oriented Constraint Satisfaction. Artificial Intelligence 136(1), 101-144 (2002).
[36]
Liu, J., Zhang, S., Yang, J.: Characterizing Web Usage Regularities with Information Foraging Agents. IEEE Transactions on Knowledge and Data Engineering 16(5), 566-584 (2004).
[37]
Liu, J., Zhong, N., Yao, Y.Y., Ras, Z.W.: The Wisdom Web: New Challenges for Web Intelligence (WI). Journal of Intelligent Information Systems 20(1), 5-9 (2003).
[38]
Liu, J.: Web Intelligence (WI): What Makes Wisdom Web? In: Proc. Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1596- 1601 (2003).
[39]
Liu, J., Jin, X., Tang, Y.: Multi-agent Collaborative Service and Distributed Problem Solving. Cognitive Systems Research 5(3), 191-206 (2004).
[40]
Liu, J., Jin, X., Tsui, K.C.: Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling. Springer, Heidelberg (2005).
[41]
Marr, D.: Vision, A Computational Investigation into Human Representation and Processing of Visual Information. W.H. Freeman and Company, San Francisco (1982).
[42]
McCarthy, J.: Roads to Human Level AI? Keynote Talk at Beijing University of Technology, Beijing, China (September 2004).
[43]
Megalooikonomou, V., Herskovits, E.H.: Mining Structure-Function Associations in a Brain Image Database. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 153-179. Physica-Verlag (2001).
[44]
Mizuhara, H., Wu, J., Nishikawa, Y.: The Degree of Human Visual Attention in the Visual Search. International Journal Artificial Life and Robotics 4, 57-61 (2000).
[45]
Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to Decode Cognitive States from Brain Images. Machine Learning 57(1-2), 145-175 (2004).
[46]
Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972).
[47]
Newell, A.: Unified Theories of Cognition. Harvard University Press (1990).
[48]
Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular Computing: A Rough Set Approach. Computational Intelligence 17, 514-544 (2001).
[49]
O'Reilly, R.C.: Biologicall Based Computational Models of High-Level Cognition. Science 314(5796), 91-94 (2006).
[50]
Ohshima, M., Zhong, N., Yao, Y.Y., Liu, C.: Relational Peculiarity Oriented Mining. Data Mining and Knowledge Discovery, Springer (in press).
[51]
Van Orden, G.C., Holden, J.G., Turvey, M.T.: Self-organization of Cognitive Performance. Journal of Experimental Psychology: General 132, 331-350 (2003).
[52]
Pattee, H.H. (ed.): Hierarchy Theory, The Challenge of Complex Systems. George Braziller, New York (1973).
[53]
Pawlak, Z.: Granularity, Multi-valued Logic, Bayes' Theorem and Rough Sets. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 487-498. Physica-Verlag, Heidelberg (2002).
[54]
Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Physica-Verlag, Heidelberg (2001).
[55]
Pinker, S.: How the Mind Works (1997).
[56]
Polkowski, L.: A Model of Granular Computing with Applications: Granules from Rough Inclusions in Information Systems. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 9-16 (2006).
[57]
Polkowski, L., Skowron, A.: Towards Adaptive Calculus of Granules. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 111-116 (1998).
[58]
Qin, Y., Sohn, M.-H., Anderson, J.R., Stenger, V.A., Fissell, K., Goode, A., Carter, C.S.: Predicting the Practice Effects on the Blood Oxygenation Level-dependent (BOLD) Function of fMRI in a Symbolic Manipulation Task. Proceedings of the National Academy of Sciences, USA 100(8), 4951-4956 (2003).
[59]
Qin, Y., Carter, C.S., Silk, E., Stenger, V.A., Fissell, K., Goode, A., Anderson, J.R.: The Change of the Brain Activation Patterns as Children Learn Algebra Equation Solving. Proceedings of the National Academy of Sciences, USA 101(15), 5686-5691 (2004).
[60]
Rosen, B.R., Buckner, R.L., Dale, A.M.: 'Event-related functional MRI: Past, Present, and Future. Proceedings of National Academy of Sciences, USA 95(3), 773-780 (1998).
[61]
Shulman, R.G., Rothman, D.L.: Interpreting Functional Imaging Studies in Terms of Neurotransmitter Cycling. Proceedings of National Academy of Sciences, USA 95(20), 11993-11998 (1998).
[62]
Simon, H.A.: The Organization of Complex Systems. In: Pattee, H.H. (ed.) Hierarchy Theory, The Challenge of Complex Systems, pp. 1-27 George Braziller, New York, (1963).
[63]
Skowron, A., Stepaniuk, J.: Information Granules: Towards Foundations of Granular Computing. International Journal of Intelligent Systems 16, 57-85 (2001).
[64]
Skowron, A., Synak, P.: Hierarchical Information Maps. In: Slezak, D.,Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 622-631. Springer, Heidelberg (2005).
[65]
Sohn, M.-H., Douglass, S.A., Chen, M.-C., Anderson, J.R.: Characteristics of Fluent Skills in a Complex, Dynamic Problem-solving Task. Human Factors 47(4), 742-752 (2005)
[66]
Sommer, F.T., Wichert, A. (eds.): Exploratory Analysis and Data Modeling in Functional Neuroimaging. MIT Press, Cambridge (2003)
[67]
Sternberg, R.J., Lautrey, J., Lubart, T.I.: Models of Intelligence. American Psychological Association (2003)
[68]
Su, Y., Zheng, L., Zhong, N., Liu, C., Liu, J.: Distributed Reasoning Based on Problem Solver Markup Language (PSML): A Demonstration through Extended OWL. In: Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), pp. 208-213. IEEE Press, Los Alamitos (2005)
[69]
Su, Y., Liu, J., Zhong, N., Zheng, L., Liu, C.: A Method of Distributed Problem Solving on the Web. In: Proc. 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), pp. 42-45. IEEE Press, Los Alamitos (2005)
[70]
Tsukimoto, H., Morita, C.: The Discovery of Rules from Brain Images. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 198-209. Springer, Heidelberg (1998)
[71]
Turing, A.: Computing Machinery and Intelligence. Mind LIX (236), 433-460 (1950)
[72]
Varley, R., Siegal, M.: Evidence for Cognition without Grammar from Causal Reasoning and 'Theory of Nind' in an Agrammatic Aphasic Patient. Current Biology 10(12), 723-726 (2000)
[73]
Ward, L.M.: Synchronous Neural Oscillations and Cognitive Processes. TRENDS in Cognitive Sciences 7(12), 553-559 (2003)
[74]
Wu, J., Cai, C., Kochiyama, T., Osaka, K.: Function Segregation in the Left Inferior Frontal Gyrus: a Listening fMRI Study. NeuroReport 18(2), 127-131 (2007).
[75]
Yao, J.T.: Information Granulation and Granular Relationships. In: Proceedings of the IEEE Conference on Granular Computing, pp. 326-329 (2005)
[76]
Yao, Y.Y., Zhong, N., Liu, J., Ohsuga, S.: Web Intelligence (WI): Research Challenges and Trends in the New Information Age. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.)WI 2001. LNCS (LNAI), vol. 2198, pp. 1-17. Springer, Heidelberg (2001)
[77]
Yao, Y.Y.: Information Granulation and Rough Set Approximation. International Journal of Intelligent Systems 16, 87-104 (2001)
[78]
Yao, Y.Y., Zhong, N.: Granular Computing Using Information Tables. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 102-124. Physica-Verlag (2002)
[79]
Yao, Y.Y.: A Partition Model of Granular Computing. In: Peters, J.F., Skowron, A., Grzymał-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232-253. Springer, Heidelberg (2004)
[80]
Yao, Y.Y.: Web Intelligence: New Frontiers of Exploration. In: Proc. 2005 International Conference on Active Media Technology (AMT 2005), pp. 1-6 (2005)
[81]
Yao, Y.Y.: Three Perspectives of Granular Computing. Journal of Nanchang Institute of Technology 25, 16-21 (2006)
[82]
Yao, Y.Y.: 'The Art of Granular Computing. In: Kryszkiewicz, M., et al. (eds.) Rough Sets and Intelligent Systems Paradigms. LNCS (LNAI), vol. 4585, pp. 101-112. Springer, Heidelberg (2007)
[83]
Zadeh, L.A.: Towards a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 19, 111-127 (1997)
[84]
Zadeh, L.A.: Some Reflections on Soft Computing, Granular Computing and Their Roles in the Conception, Design and Utilization of Information/Intelligent Systems. Soft Computing 2, 23-25 (1998)
[85]
Zadeh, L.A.: Precisiated Natural Language (PNL). AI Magazine 25(3), 74-91 (2004)
[86]
Zhang, B., Zhang, L.: Theory and Applications of Problem Solving. North-Holland, Amsterdam (1992)
[87]
Zhang, L., Zhang, B.: The Quotient Space Theory of Problem Solving. Fundamenta Informatcae 59, 287-298 (2004)
[88]
Zhong, N., Liu, J., Yao, Y.Y., Ohsuga, S.: Web Intelligence (WI). In: Proc. 24th IEEE Computer Society International Computer Software and Applications Conference (COMPSAC 2000), pp. 469-470. IEEE Press, Los Alamitos (2000)
[89]
Zhong, N.: Multi-database Mining: a Granular Computing Approach. In: Proceedings of the Fifth Joint Conference on Information Sciences (JCIS-2000), pp. 198-201 (2000)
[90]
Zhong, N., Liu, C., Ohsuga, S.: Dynamically Organizing KDD Process. International Journal of Pattern Recognition and Artificial Intelligence 15(3), 451-473 (2001)
[91]
Zhong, N., Liu, J., Yao, Y.Y.: In Search of the Wisdom Web. IEEE Computer 35(11), 27-31 (2002)
[92]
Zhong, N.: Representation and Construction of Ontologies for Web Intelligence. International Journal of Foundations of Computer Science 13(4), 555-570 (2002)
[93]
Zhong, N., Liu, J., Yao, Y.Y. (eds.): Web Intelligence. Springer, Heidelberg (2003)
[94]
Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity Oriented Multi-Database Mining. IEEE Transaction on Knowlegde and Data Engineering 15(4), 952-960 (2003)
[95]
Zhong, N.: Developing Intelligent Portals by Using WI Technologies. In: Li, J.P., et al. (eds.) Wavelet Analysis and Its Applications, and Active Media Technology, vol. 2, pp. 555-567. World Scientific, Singapore (2004)
[96]
Zhong, N., Wu, J.L., Nakamaru, A., Ohshima, M., Mizuhara, H.: Peculiarity Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mechanism. Cognitive Systems Research 5(3), 241-256 (2004)
[97]
Zhong, N., Liu, J. (eds.): Intelligent Technologies for Information Analysis. Springer, Heidelberg (2004)
[98]
Zhong, N., Hu, J., Motomura, S., Wu, J.L., Liu, C.: Building a Data Mining Grid for Multiple Human Brain Data Analysis. Computational Intelligence 21(2), 177-196 (2005)
[99]
Zhong, N.: Impending Brain Informatics (BI) Research from Web Intelligence (WI) Perspective. International Journal of Information Technology and Decision Making 5(4), 713-727 (2006)
[100]
Zhong, N., Liu, J., Yao, Y.Y.: Envisioning Intelligent Information Technologies (iIT) from the Stand-Point of Web Intelligence (WI). Communications of the ACM 50(3), 89-94 (2007)
[101]
Zhong, N.: Ways to Develop Human-Level Web Intelligence: A Brain Informatics Perspective. In: Franconi, E., Kifer, M., May, W. (eds.) The Semantic Web: Research and Applications. LNCS, vol. 4519, pp. 27-36. Springer, Heidelberg (2007)
[102]
The OGSA-DAI Project: http://www.ogsadai.org.uk/

Cited By

View all
  • (2013)Common and Dissociable Neural Substrates for 2-Digit Simple Addition and SubtractionProceedings of the International Conference on Brain and Health Informatics - Volume 821110.1007/978-3-319-02753-1_10(92-102)Online publication date: 29-Oct-2013
  • (2009)Data explosion, data nature and dataologyProceedings of the 2009 international conference on Brain informatics10.5555/1813657.1813686(147-158)Online publication date: 22-Oct-2009
  • (2009)EEG/ERP meets ACT-RProceedings of the 2009 international conference on Brain informatics10.5555/1813657.1813677(63-73)Online publication date: 22-Oct-2009
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
WImBI'06: Proceedings of the 1st WICI international conference on Web intelligence meets brain informatics
December 2006
515 pages
ISBN:3540770275
  • Editors:
  • Ning Zhong,
  • Jiming Liu,
  • Yiyu Yao,
  • Jinglong Wu,
  • Shengfu Lu,
  • Kuncheng Li

Sponsors

  • NSF of China: National Natural Science Foundation of China
  • State Administration of Foreign Experts Affairs
  • Beijing University of Technology
  • Maebashi Institute of Technology
  • Web Intelligence Consortium

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 15 December 2006

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2013)Common and Dissociable Neural Substrates for 2-Digit Simple Addition and SubtractionProceedings of the International Conference on Brain and Health Informatics - Volume 821110.1007/978-3-319-02753-1_10(92-102)Online publication date: 29-Oct-2013
  • (2009)Data explosion, data nature and dataologyProceedings of the 2009 international conference on Brain informatics10.5555/1813657.1813686(147-158)Online publication date: 22-Oct-2009
  • (2009)EEG/ERP meets ACT-RProceedings of the 2009 international conference on Brain informatics10.5555/1813657.1813677(63-73)Online publication date: 22-Oct-2009
  • (2009)Simulating human heuristic problem solvingProceedings of the 2009 international conference on Brain informatics10.5555/1813657.1813676(53-62)Online publication date: 22-Oct-2009
  • (2009)An Autonomy-Oriented Paradigm for Self-Organized ComputingProceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 0210.1109/WI-IAT.2009.136(100-103)Online publication date: 15-Sep-2009
  • (2005)Multi-aspect data analysis in brain informaticsProceedings of the First international conference on Pattern Recognition and Machine Intelligence10.1007/11590316_13(98-107)Online publication date: 20-Dec-2005

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media