Jump to content

Nice subgroup

From Wikipedia, the free encyclopedia

In algebra, a nice subgroup H of an abelian p-group G is a subgroup such that pα(G/H) = 〈pαG,H〉/H for all ordinals α. Nice subgroups were introduced by Hill (1967). Knice subgroups are a modification of this introduced by Hill & Megibben (1986).

References

[edit]
  • Griffith, Phillip A. (1970), Infinite abelian group theory, The University of Chicago Press, Chicago, Ill.-London, ISBN 978-0-226-30870-8, MR 0289638
  • Hill, Paul (1967), On the classification of abelian groups, Xeroxed manuscript
  • Hill, Paul; Megibben, Charles (1986), "Axiom 3 modules", Transactions of the American Mathematical Society, 295 (2): 715–734, doi:10.2307/2000060, ISSN 0002-9947, JSTOR 2000060, MR 0833705