Jump to content

Simple (abstract algebra)

From Wikipedia, the free encyclopedia

In mathematics, the term simple is used to describe an algebraic structure which in some sense cannot be divided by a smaller structure of the same type. Put another way, an algebraic structure is simple if the kernel of every homomorphism is either the whole structure or a single element. Some examples are:

The general pattern is that the structure admits no non-trivial congruence relations.

The term is used differently in semigroup theory. A semigroup is said to be simple if it has no nontrivial ideals, or equivalently, if Green's relation J is the universal relation. Not every congruence on a semigroup is associated with an ideal, so a simple semigroup may have nontrivial congruences. A semigroup with no nontrivial congruences is called congruence simple.

See also

[edit]