A swarm with dynamic topology. Here we propose to use an approach based on the Barabási-Albert model to define a dynamic communication topology for Particle Swarm Optimizers. We compared our proposal to previous approaches, including a simpler Barabási-Albert-based approach and other most used approaches, and we obtained better results in average for well known benchmark functions.
This is the first part of my Master's thesis. The second part regards to assessing the information spread in the swarm. In case you speak portuguese, check this out: Utilizando Ciência das Redes para Avaliar e Modificar o Fluxo de Informação de um Otimizador por Enxames de Partículas
To watch:
To read:
Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers.
To cite:
Oliveira, M., Bastos Filho, C. J. A., & Menezes, R. (2013). Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers. In Studies in Computational Intelligence (Vol. 424, pp. 39–47). https://doi.org/10.1007/978-3-642-30287-9_5