Naar inhoud springen

Analyse/Differentiatie toepassingen

Uit Wikibooks

Nota bene: Aan dit artikel wordt momenteel nog hard gewerkt.

Extreme Waarden

[bewerken]
De functie x3-3x2+2 (blauw) en haar eerste afgeleide (rood).

In de afbeelding hiernaast is weergegeven:

  • De functie (blauw).
  • Haar eerste afgeleide: (rood).

In de blauwe grafiek zijn twee extreme waarden (ook: toppen) te zien: een maximum aan de linkerkant en een minimum aan de rechterkant. De x-waarden van deze extremen zijn te bepalen met behulp van de eerste afgeleide, door deze afgeleide gelijk te stellen aan 0:

Deze vergelijking is met behulp van de wortelformule op te lossen voor x:

De x-coördinaten van de toppen van de grafiek zijn dus 0 en 2. Door deze waarden in te vullen in f is het mogelijk de exacte coördinaten van de toppen van de grafiek te bepalen. Deze zijn: (0,2) en (2,-2).

Een Raakpunt Bepalen

[bewerken]

De grafieken van de formules en raken elkaar in een punt als geldt:

Toepassing van het Raakpunt (I)

[bewerken]

Gegeven is de functie . Bepaal alle , waarvoor geldt dat geen oplossingen heeft.

Wanneer je de grafiek van bekijkt, blijkt dat er een waarde van a bestaat, zodat de vergelijking juist één oplossing heeft. Dit is het punt waarin de grafiek van juist raakt aan de lijn . Er valt op, dat voor kleinere , dus een minder steile lijn, de vergelijking geen oplossing heeft, terwijl voor grotere a de vergelijking altijd tenminste één oplossing heeft.

We kunnen de x-coördinaat van het snijpunt berekenen door gebruik te maken van bovenstaande regel:

Dit levert het volgende stelsel van vergelijkingen:

Oplossen van dit stelsel levert .

In dit punt geldt dat , dus .

De vergelijking heeft dus geen oplossingen voor .

Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.