Naar inhoud springen

Nilpotent

Uit Wikipedia, de vrije encyclopedie

In de wiskunde wordt een element van een ring nilpotent genoemd als er een zeker positief geheel getal bestaat zodat tot de macht gelijk is aan nul

  • De bovenstaande definitie kan in het bijzonder worden toegepast op vierkante matrices. De matrix
is nilpotent omdat . Men spreekt van een nilpotente matrix.
  • In de factorring , is de klasse van 3 nilpotent, omdat congruent is met 0 modulo 9.

Eigenschappen

[bewerken | brontekst bewerken]

Geen enkel nilpotent element behalve in een triviale ring {0} kan een eenheid zijn, die maar een enkel element 0 = 1 bevat. Alle nilpotente elementen die van nul verschillen zijn nuldelers.

Een vierkante matrix waarvan een orde geen coëfficiënten heeft in een commutatief lichaam is dan en slechts dan nilpotent als zijn karakteristieke polynoom gelijk is aan . Dit is alleen het geval wanneer .

Nilpotente elementen van een commutatieve ring vormen een ideaal, de nilradicaal van deze ring.

Als nilpotent is, dan is een eenheid, omdat inhoudt dat