Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide Ace the DP-203 exam with advanced data engineering skills

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781805124689
Length 548 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Giacinto Palmieri Giacinto Palmieri
Author Profile Icon Giacinto Palmieri
Giacinto Palmieri
Mr. Surendra Mettapalli Mr. Surendra Mettapalli
Author Profile Icon Mr. Surendra Mettapalli
Mr. Surendra Mettapalli
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Azure Basics FREE CHAPTER
2. Chapter 1: Introducing Azure Basics 3. Part 2: Data Storage
4. Chapter 2: Implementing a Partition Strategy 5. Chapter 3: Designing and Implementing the Data Exploration Layer 6. Part 3:Data Processing
7. Chapter 4: Ingesting and Transforming Data 8. Chapter 5: Developing a Batch Processing Solution 9. Chapter 6: Developing a Stream Processing Solution 10. Chapter 7: Managing Batches and Pipelines 11. Part 4:Secure, Monitor, and Optimize Data Storage and Processing
12. Chapter 8: Implementing Data Security 13. Chapter 9: Monitoring Data Storage and Data Processing 14. Chapter 10: Optimizing and Troubleshooting Data Storage and Data Processing 15. Chapter 11: Accessing the Online Practice Resources 16. Other Books You May Enjoy

Designing Partition Strategy for Analytical Workloads

The syllabus of the DP-203 exam is heavily skewed towards analytical workloads, as opposed to transactional workloads. While the latter is concerned with the creation, updating, or deletion of live production data, the former is concerned with trying to extract meaningful lessons from historical data (which mainly deals with data that is read only). The primary objective is to extract insights from historical data with data refresh and transformation activities for analytical purposes. In this context, the term “historical” could mean data from just last month or even last week.

Note

This section primarily focuses on the Implement a partition strategy for analytical workloads concept of the DP-203: Data Engineering on Microsoft Azure exam.

There are three main types of partition strategies for analytical workloads. These are as follows:

  • Horizontal partitioning (also known as sharding)
  • Vertical...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime